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Synge’s equations of motion applied to a perfect fluid 

J D McCreat and G O’BrienS 
t Department of Mathematical Physics, University College, Belfield, Dublin 4, Ireland 
$ School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Rd, 
Dublin 4, Ireland 

Received 18 July 1978 

Abstract. Conservation laws are derived using Synge’s method in third approximation for a 
general continuous medium. These laws, together with Synge’s equations of motion, are 
then applied to the case of a perfect fluid and a comparison is made with the results of 
Chandrasekhar and co-workers. 

1. Introduction 

An exhaustive treatment of a general relativistic perfect fluid has been given in a series 
of papers by Chandrasekhar and his co-workers (Chandrasekhar 1965, Chandrasekhar 
and Nutku 1969, Chandrasekhar and Esposito 1969). They employ a method of 
successive approximations based on expansions in inverse powers of the speed of light, 
carrying out the calculations to the 24 - post-Newtonian approximation (24 - PNA) 

where the lowest-order radiation effects appear. The same problem has subsequently 
been treated by Anderson and Decanio (1975) using a different approach. Both 
approaches suffer from the disability of running into divergent integrals at the 24- PNA. 

Another method of successive approximations, but for a general continuous medium, is 
that due to Synge (1970). Synge showed that given stationary conditions at a finite time 
in the past, his method converges at all orders of approximation, and work at present in 
progress indicates that divergent integrals do not occur at the higher orders of 
approximation. In the present work, which is of a preliminary nature, we restrict 
ourselves to Synge’s equations of motion in third approximation-corresponding more 
or less to Chandrasekhar’s 2nd PNA-where radiation terms do not yet arise. In earlier 
papers (McCrea and O’Brien 1978, O’Brien 1978) these equations were applied to 
calculate the orbital and spin motion of a binary system and certain general results 
derivable from Synge’s equations were indicated briefly. The purpose of the present 
work is to give a complete account of the general results underlying our calculations in 
our previous work and to show how these results compare with those of Chandrasekhar 
(1965) when applied to a perfect fluid. 

In Q 2 we derive the relations between two alternative decompositions of the energy 
tensor, Tab, one being the exact decomposition in terms of the proper energy density, 
the four-velocity and the proper stress, the other being the approximate decomposition 
of our previous work (McCrea and O’Brien 1978, O’Brien 1978) which is a slightly 
modified version of that of Synge (1970). These relations will be used later on in making 
a comparison between our work and that of Chandrasekhar. In our previous work we 
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assumed rigid motion so that the specific internal energy density, n, was constant to the 
order of approximation considered and there was no need to make explicit mention of 
it. However, here we drop the rigid-motion condition and hence II will enter explicitly 
into the equation of energy balance. This equation is derived in the context of the exact 
decomposition and then translated into the terms of the approximate decomposition of 

In § 3 we state Synge's equations of motion in third approximation for a general 
continuous medium and in Q 4 the consequent conserved quantities are derived. In 
§§ 5 ,  6 and 7 the preceding work is applied to the case of a perfect fluid and the results 
for this case are found to be in agreement with those of Chandrasekhar (1965). 

For ease of reference, we mention here the main points of notation which will 
frequently recur in what follows. Italic indices take the values (1, 2, 3, 4) and Greek 
indices the values (1, 2, 3). We use 'rectangular Cartesian' coordinates (xl ,  x2, x3) and 
imaginary time x4 = it, so that the metric has signature (+4). 

Tab. 

For any function f(x, t ) ,  where x = (xl, x 2 ,  x 3 ) ,  we have 

where t' = t - Ix - x'I ; 

Inf(x, t )  = I f(x', f)lx-x'l'-l d3x' ( n  = 0, 1, 2, . . .); (1.3) 

along a world-line x, = x,(t), x4 = it, 

f = d f l d t =  fSt+f.,v, (1.4) 
where U, = dx,/dt. 

the velocity of light are unity. 
Gravitational units are used throughout, so that both the gravitational constant and 

2. The energy tensor for a general medium 

The energy tensor, Tab, of a continuous medium (cf Ehlers 1961) may be decomposed 
uniquely, with respect to any unit time-like vector ua,  in the form 

(2.1) 
where p = Tabuaub, qa  = - y u a  - Tabub and qaua = (Tab& = 0. In particular, if ua  is 
taken to be the local barycentric velocity of the medium (or average velocity of the 
'particles'), then p is the total proper energy density, q a  is the heat flow relative to ua  
and gab  is the stress. In what follows, we shall consider only the case in which there is no 
heat flow (i.e. q a  = 0) so that 

(2.2) 

Tab  = a~ + 2q'"u b ,  - 

Tab = p U a ~ b - u a b  

and u a  is now the unit time-like eigenvector of Tab with -p  as the corresponding 
eigenvalue. 

If the expression (2.2) is substituted into the exact equations of motion, 

T a b l b  = 0 ( 2 . 3 )  
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and the resulting equations contracted with U , ,  the equation of material energy balance 

(2.4) ab 
/ l ,3uUu + / L U a , u  -0‘ Ualb = 0 

is obtained. It is assumed that the main part of the total proper energy density p (Ehlers 
196 1) is due to the rest-mass density F O  which satisfies the conservation equation 

( p o U U ) i a  = 0, (2.5) 

and the specific internal energy density II is defined by 

p = po(1 +m. (2.6) 

Substituting (2.6) and (2.5) into (2.4) we find that the material energy balance equation 
now takes the form 

pon,uUa = (TabU,lb. (2.7) 

So far everything has been exact. Let us now turn to the weak-field approximation 
considered by Synge (1970), McCrea and O’Brien (1978) and O’Brien (1978). To fix 
our ideas, we suppose that the universe with which we are dealing consists of a single 
body or several finite bodies of comparable mass and size and the small parameter, k ,  
which forms the basis of the approximation is the mass/mean radius ratio of a typical 
body. We have 

po = L - 2 0 ( k )  

U &  = O(k1’2 )  

n = O ( k )  

UP” = L C 2 0 ( k 2 )  

where L is a typical radius. In future we shall omit multiplication by the appropriate 
power of L and simply write, for instance, po = O ( k ) .  We also assume slow motion so 
that 

a l a r  = O(k l’*). (2.9) 

The decomposition (2.2) of the energy tensor implies the following alternative 
decomposition which is more convenient for our purposes: 

T44 = - p T & ~ = ~ ( P U , - S , ~ U ~ ) + O “ ” * )  ~ ~ ” = p ~ , t l ~ - ~ , ~ + o ( k ~ )  (2.10) 

where U, = i u F / u 4  = dx,/dt along the world-lines x , ( t )  of the material particles, 
p = - p ( u  ) -U 

4 2 44 and S,, = U,”. 
The metric tensor in first approximation (cf Synge 1970, equation (9.5)) is 

g a b  = Sub + Yab 

where 

(2.11) 

y,” =2S,,V+O(k2) yF4 = 4i w,, + ~ ( k ” ~ )  y44=-2V+O(k2)  (2.12) 

where 

Using (2.11) and (2.12) one may verify that the relations between the quantities p, U, of 
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(2.10) and k ,  u a  of (2.2) are given by 

p, = p (  1 - U’ - 2 V )  + o ( k 3 )  
=(I+’ 2 + v ) ~ ,  + 0(k5/*) 

U, = ( 1  + tu’ + 3 V )  U, - 4 w, + O(k 

u4=i (1+2u2+  v)+o(~’)  (2.14) 

~ ~ = i ( l + & ~ ’ - -  v)+o(~’) 
2 where U = u,u,. 

(2.6), we obtain 
Substituting (2.13) into the exact material energy balance equation (2.7) and using 

(2.15) p dl l ld t  = S , J , ~ ~  + O(k7’2). 

Equation (2.15) corresponds to the classical equation for isentropic motion. 

3. The equations of motion for a general medium 

In Synge’s approximation method, starting from Tab = O ( k )  (in the sense that all 
components are less than or equal to O ( k ) ) ,  one generates a sequence of metrics 

gab = a a b  + Yab ( M = 0 , 1 , 2 , .  , . , N )  (3.1) 
M M 

by the recurrence formula 

Yab = 0 
0 

where 
1 

Y : b =  Y a b - T a a b Y c c  
M M  M 

and 

( M  = 1 , 2 ,  

where Gab is the Einstein tensor for the metric gab and 
M M 

Equation (3.2) differs from Synge in the use of the J operator instead of Synge’s more 
complicated K operator. However, use of the J operator leads to the same results. 

If one stops at the Nth step and imposes on Tab the equations 

Hab,b = 0 
N - 1  (3.7) 
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then, as in Synge (1970), it can be shown that the gab satisfy the equations 
N 

Gab = -KTab  + O ( k N + l )  (3.8) 
N 

so that the field equations are satisfied with an error of order k N + ‘ .  It may also be shown 
that equations (3.7) imply 

Tablb = O ( k N + ’ )  (3.9) 
N 

while conversely Tablb = 0 imply Hab ’ b  = o(kN”), where the N under the vertical 

denotes covariant derivative with respect to g a b .  Hence, to order k N + ’ ,  (3.7) are an 

equivalent form of the equations of motion. 
In terms of the decomposition (2.10) of Tab, Synge’s equations of motion in third 

approximation ( N  = 3) aret  

N N - 1  

N 

Twb,b = pVw + ( p  f p e ) V ,  - s,,,, - ( S w v V , ) ~ r  

= p ~ . ,  + Y, + 0 ( k 4 )  (3.10) 

-iT4’,b = p  +pe  -swu~uU, -s,uU,~u 

= - p ~ . ,  + 0 ( k 7 / 7  (3.11) 

where 

Y, = TYYVS, -4T””V*,  + 4 4 ~ ~ , (  Ww,”- W,,, -6,,Vs,) 

+pD,[$D: ( 1 2 ~ )  - 2 V 2  + KVu]+4pD, W, = O ( k 3 )  

and 

KCLy = lo( T,”)  e = v,+. 

On multiplication by U@, equation (3.10) yields 

Substituting (3.14) and (2.15) into (3.11) we then obtain 

where 

p* = p (1 - ; U 2  + v - n). 
p* is the familiar post-Newtonian conserved density. 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

4. The conserved quantities for a general medium 

Synge’s equations of motion in Nth approximation in the form given by (3.7) imply the 

i Cf McCrea and O’Brien (1978), equations (2.23) and (2.24). 
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conservation of the quantities 

P,=-i H P 4  dgx 

P4 = -i 5 H44 dsx 

J 
N-l  

and 

P , Y  = -i [x,HY4 -x ,HF4]d3x 
N - l  h -1 

(4.3) 

where the integrals are taken over all of space. We refer to P,, -iP4 and PWy as the total 
three-momentum, mass-energy and angular momentum of the universe respectively. 
Since the supports of the integrands above are non-compact the question of con- 
vergence of the integrals (4.1)-(4.3) inevitably arises. We are assuming that the system 
was stationary at some finite time in the past and hence, as shown by Synge (1970), hub 
goes to zero like rY4 as r + a. Therefore in this case, since Tab is assumed to have 
compact support, the integrals (4.1) and (4.2) certainly converge. However, even in this 
case, the convergence of (4.3) would remain doubtful. In the present work we do not 
intend to treat the convergence of (4.3) in full generality. Consideration is restricted to 
the third approximation (N = 3) with Yw4 and evaluated explicitly to order k512 and 
k 2  respectively. 

In what follows we shall drop the suffix N -  1 (with N = 3) in the integrals 
(4.1)-(4.3). Also, for the sake of brevity, we shall describe as compact any function 
whose restriction to a hypersurface t = constant has compact support. 

From (2.10), (3.4) and equation (1.51) of Synge (1970) we have 

A - 1  

i 
+-(2V.,W,., 4T  -2V.,,W, -2VW,., + 2  W,V~,)+O(k7’2) (4.4) 

where it should be noted that the instantaneous potentials ?, w, and of Synge’s 
paper are denoted simply by V, W, and KgY in the present work. We shall now show 
that the non-compact integrals in (4.1) and (4.3) may be replaced by compact ones. To 
do this we resolve the integrands into two parts-a compact part and a non-compact 
part which gives no contribution to the integrals. Let us take the integral (4.1) first. 

From (2.13) we have 

w,,,, = -4rpv, (4.5) 
and 

v.,, = -47rp. 

Also, by equation (3.1 l ) ,  it is easily verified that 
(4.6) 

Using (4.5)-(4.7), we may write (4.4) in the form 
HP4 = H f W 4  + H l l W 4  + 0 ( k 7 / 2 )  

(4.8) 
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where 

~ 1 ~ 4  = i[pu, - S,,u, + 4p ( Vu, - W, )] 
and 

(4.9) 

(4.10) 

H I F ‘ ~  is compact while is not. For large r, where r = I x ]  and the origin of 
coordinates is within the (compact) support of p, V and W, fall off like r - l  and hence 
HItw4 falls off like r-4. Equation (4.10) may be written in the alternative form 

i 
4 T  

H f l W 4  - - - ( - 3 v., w,., + 2 v., w,., - 2 v.,, w, + 2 vw, ,,, - 2 w, V.,,) . 

i i 
2T 4 T  

Hll’4 = - [( vw,., + vw,,, - v., w, - V.,W,)., - (VW,.,).,] +-( v., W,.,), 
(4.11) 

and, since the first term of (4.11) is the divergence of a quantity which falls off like r-3 at 
great distances, its volume integral vanishes by Gauss’ theorem. Hence 

Thus 

H l l F 4  = - i v., W,., + HlrrF4 (4.13) 
4 T  

where 

d 3 ~  = 0. (4.14) H U I L L ~  I 
HrIF4 is still non-compact but it may be resolved further as follows. It is shown in the 

Appendix that 

i 1 1 
- V,,W,., = !jipD,Jz(p~U) +-(VW~~,)., +-[V,D,JZ(PUY) - VD,dz(pv~)I.,. 
4 T  4 T  8~ 

(4.15) 

Again, by Gauss’ theorem, the volume integral of the last two terms of (4.15) vanishes 
and hence 

V., W,., d3x = pD,,I~(pt.,) d3x. (4.16) 
477 

Therefore, by (4.8), (4.9), (4.12) and (4.16) the integral (4.1) may be written in the form 

H, d3x + O(k7’2)  

where 

(4.17) 

H, =pu,  -S,uuq +bD, ,~z (p~ , )+4~(vu ,  - U’,). (4.18) 

A similar procedure can be used for the integral (4.3). However, since the integrand 
in this case falls off like rY3, instead of Y4,  one must be more careful in applying Gauss’ 
theorem. First of all, one writes H G 4  in the form given by (4.8)-(4.10). With HIrF4 as in 
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(4.10) one may write, after some straightforward calculation, 

J ( x ~ H I ~ ~ ~  -xfi11fi4 ) d3X 

i 
47r 

=- J ( x , ~ ~ , , - x ~ ~ ~ , ) ~ ~ ~ ~ d ~ x  

[x,( VW,,, + VW,-, - V-,W, - V.,W,)]~, d 3 ~  

-'I [xy(VWu~,+ VW,.,- V,,Wu- V.,W,)JUd3x 
27r 

i 1 

27r 27r 
--5 ( X , V W ~ . ~ ) ~ , ,  d3x +- J (X,VW,.~)., d3x. (4.19) 

Application of Gauss' theorem to the last four integrals of (4.19) then yields 

i 1 
-- x ,  VW,,,n, dS  + - x, VWulun, d S  

27r Js 271 Js (4.20) 

where the surface of integration S is the sphere at infinity and nu is the unit normal to S. 
However, the integrands in the surface integrals fall off only like r-* so that, in order to 
see whether they vanish, we must examine them in more detail. 

At  great distances 

v = mr-' + O(r-*) 

m = J p ( x ' ,  t )  d3x' 

W, = 4,r-I + o(r-*) 

where 

and 

where 

4, = ~ ( x ' ,  t )u, (x ' ,  t )  & X I .  

Also, on S, 
-1 n, =x,r . 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 
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Furthermore, for a sphere S of radius r, 

(4.26) 

Hence, using (4.21)-(4.26), it is seen that the surface integrals in (4.20) all vanish, so 
that 

If we now substitute (4.15) into (4.27), some straightforward calculations, and use of 
the same arguments as before for the surface integrals obtained by applying Gauss’ 
theorem, yield the result 

(4.28) 

Thus, combining the equations (4.8), (4.9), (4.27) and (4.28) we obtain for the integral 
(4.3) 

P,,“ = J (x,H, -xJI,,) d3x +O(k7’*)  (4.29) 

where H,, is given by (4.18). 

equation (1.51) of Synge (1970) 
Finally, for the integral (4.2) the procedure is much simpler. By (2.10), (3.4) and 

(4.30) 
3 
817 

= -p(l + 2 V) + - v.,v., + 0(k3), 

and, by straightforward application of Gauss’ theorem, this yields 

p4 = i J ~4 d3X + 0(k3) 

H4 = p (1 + ; V). 

where 

(4.31) 

(4.32) 

Thus, in equations (4.17), (4.29) and (4.32), we have succeeded in our aim of expressing 
P,, P4 and P,,” as integrals with compact integrands, to the order in k indicated. 

In addition to (4.1)-(4.3), Synge’s equations of motion imply the conservation of 

PN4 = -i ( x , ,H~~  - x4HW4)  dgx I 
= 1 x,H4 d3x - x4 1 H,, d3x + 0(k3) (4.33) 

from which the definition and motion of the centre of mass of the system may be 
derived, as in § 3 of McCrea and O’Brien (1978). 

5. Energy tensor for a perfect fluid 

In this and in the following sections we apply the foregoing results to the case of a 
perfect fluid in order to make a comparison with the work of Chandrasekhar (1965). For 
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a perfect fluid the stress tensor gab is given by 

gab = -p(g”b + U % b )  (5.1) 

where p is the isotropic pressure, and the decomposition (2 .2)  then takes the form 

Tub  = ( p  + p ) u a u b  +pgab .  (5 .2 )  

We recall from (2 .6)  that p may be written 

/J = po(1+ n). (5.3) 

Note that our p and po correspond to Chandrasekhar’s E and p respectively, while our p 
will retain the same meaning it had in the previous sections, namely p = -T44. 

In order to parallel Chandrasekhar’s developments, we define the following 
functionals of po and U,: 

U = lo(pCL0) = O ( k )  

and 

U, = I ~ ( ~ ~ ~ , )  = o ( k 3 l 2 ) .  

U =  V + O ( k 2 )  

U, = W, + 0 ( k 5 1 2 ) .  

p = po( l  + U’ + 2 u  + n) + 0 ( k 3 )  

= ( I + ; ~ * + U ) ~ , + O ( ~ ~ / ~ )  

= (1 - 4 u ,  + 0 ( k 5 1 2 )  

Using (2 .13) ,  (2.14) and (5 .3)  one may verify that 

and 

If we now combine (2.14) with (5.3), (5.6) and (5.7) we obtain 

u ~ = ~ ( I + ~ u ’ + u ) + o ( ~ ’ )  

u4 = i(1 +;U’ - U )  + ~ ( k ’ ) ,  

(5.4) 

( 5 . 5 )  

(5.6) 

(5.7) 

( 5 . 8 )  

(5.9) 

(5.10) 

(5.11) 

(5.12) 

and on comparing the last four expressions with equations (15 )  and (16 )  of Chan- 
drasekhar (1965) we see that they agree. 

Substituting (5.8) into the decomposition (2.10) of Tab we may write the 
contravariant components of the energy tensor as 

T w  ” = p 0 ( 1 + U ’ + 2 U + n) U ,  U, - S,  + 0 (k ‘) (5.13) 

T 4 ,  =i[po( l+  u’+-~U+I’I)U, -S, ,~,]+0(k”’) (5.14) 
T~~ = -po(l + (5.15) 

To find S,, for a perfect fluid to O(k3) ,  we recall that, by definition, S,, = U,” and 
hence, by (5.1), 

+ 2 u  + n) + o ( k 3 ) .  

s,, = - p ( u W u Y  +g” ” ) .  (5.16) 
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Therefore, by (5.9) and the fact that 

g,” = a,”(l- 2 U  + O ( k 2 ) ) ,  (5.17) 

we obtain 

s,, = -pa,, + p  (2 uslly - + 0(k4). (5.18) 

If (5.18) is then substituted into (5.13)-(5.15) one obtains the energy tensor in terms of 
PO, U,, II and p in the form 

T’”“ = p ~ u , u , ( l +  u 2  + 2U + II + p / p o )  + p ( l  - 2U)S,, + O(k4) 

T ~ *  = ipo(l + u 2  + 2 U + n + p / p 0 ) u ,  + ~ ( k ~ ’ ~ )  

T44 = - CL& + L12 +2u + n) + 0(k3), 

(5.19) 

(5.20) 

(5.21) 

in agreement with equations (20) of Chandrasekhar (1965). 

6. The equations of motion for a perfect fluid 

Synge’s equations of motion in third approximation read 

where Y, is given by (3.12). By substituting the components (5.19)-(5.21) of the 
energy tensor into the left-hand sides of (6.1) and (6.2) we obtain the latter in terms of 
c ~ ~ ,  U,, II and p .  In order to effect a comparison with Chandrasekhar’s equations of 
motion we must also find the right-hand sides in terms of these variables. To do this, we 
first of all note that, by (2.13), (5.4) and (5.8),  

v = U + Io[po(u2 + 2 U + n ) l +  o ( k 3 )  

and, by (3.13) and (5.19), 

K,, = Io(pu2 + 3p) + O(k3) .  

(6.3) 

(6.4) 

Chandrasekhar uses two further functions, @ and X, defined by means of the equations 

v2@ = - 4 T p 0 ( V 2  + U + 4- 3p/2p0) (6.5) 
and 

v2x = -2 U, 

or, equivalently, @ and X are given by the integral representations 

@ = l o [ p o ( u 2 +  U+$II+3p/2po)]  (6.7) 
and 

x = -12po. 

He also defines a function m by 

m = cLo(1f u 2  + 2 u  + n + p / p o ) .  (6.9) 



5 14 J D McCrea and G O’Brien 

If we now substitute (5.19)-(5.21) into the left-hand side of (6.1), with (6.3), (6.4), 
(6.7) and (6.8) in the right-hand side, and use (6.9), we obtain, after some straightfor- 
ward algebra, 

D, (OWUU, )  + D, (mu,) + (I - 2 U)p., - (T( 1 + U 2 ,  U’, + 4p,0Ue ( U’, + UwU.,) 

- 4p,o[ U,,, + U,( U,,, - U,,,)] + POD, (2 U 2  - 2@ + $DfX) 
= 0(k4), (6.10) 

in agreement with equation (67) of Chandrasekhar ((1965). 
Equation (6.2) is treated somewhat more simply. It may be written 

D, [/LO( 1 + U + 2 U + II + P / ~ o )  U,] + D~[/Ao( 1 + U’ + 2 U + II)] = -/.LO U,, + O( k7 l2 ) ,  
(6.11) 

(6.12) 

which is the same as equation (64) of Chandrasekhar (1965). Hence, Synge’s equations 
of motion in third approximation for a perfect fluid agree with Chandrasekhar’s first 
post-Newtonian equations of hydrodynamics. 

which, on substituting for U from (6.9), yields 

D, ((TU,) + DP + /LO U’, - ~ * r  = O(k 7’2), 

7. The conserved quantities for a perfect fluid 

Let us first consider the linear three-momentum and the angular momentum. Chan- 
drasekhar has shown that the post-Newtonian equations of motion for a perfect fluid 
allow one to define a conserved linear momentum 

T, d3x = constant (7.1) I 
and a conserved angular momentum 

I ( x , ~ ,  - x , ~ , )  d3x = constant (7.2) 

(7.3) 

(7.4) 

We shall now show that H, as given by (4.18) agrees with T, for the case of a perfect 
fluid and to the order of approximation considered. 

For a perfect fluid 

H, f p u ,  + + p ~ , ~ 2 ( p U , ) + 4 p ( ~ v ,  - w,)+o(P~). (7.5) 
Substitution of (5.6)-(5.8) into (7.5) yields 

H, = p,o(l + U 2  + 2 U + n + p ~ c L o ) U ,  + i p 0 ~ , ~ 2 ( p , 0 u , )  +4cL0(uv, - U,) + o(k7i2). 
(7.6) 

From the definition (7.4) of U,;,,, it is easy to verify that 

D,Jz(p,o~~) = U, - (7.7) 
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Hence, combining (6.9) with (7.6) and (7.7), we obtain 

H ,  = o u , + + ~ ~ ( u , -  u , ; , , ) + ~ ~ o ( u v , -  v,)+o(k7/*) (7.8) 

for a perfect fluid, in agreement with T, as defined by equation (128) of Chandrasekhar 
(1965). 

The so called post-Newtonian rest-mass density p* was defined by (3.16) and 
satisfies the continuity equation (3.15), so that the rest mass mo of the system, defined by 

(7.9) 

dmoldt = O(k7 /2 ) .  (7.10) 

An alternative expression for p* is obtained by substituting (5.8) into (3.16) to obtain 

p* = / l o ( l  +;U + 3 U ) ,  (7.11) 

as in equation (118) of Chandrasekhar (1965). In 9 4 we showed that the fourth 
component, P4, of the conserved total four-momentum is expressible in the form given 
by (4.31) and (4.32). Defining the total mass-energy, m, of the system by 

m = -iP4, (7.12) 

and expressing p in (4.32) in terms of p* we obtain 

m = J p*(l  ++v’-+u+H) d3x +O(k3) .  

If we then define the total energy of the fluid system by 

E = m - m O ,  

then, by (7.9) and (7.13), 

(7.13) 

(7.14) 

E =  J p * ( $ u 2 - ~ U + n ) d 3 x + O ( k 3 )  (7.15) 

dE/dt = O(k7/*) .  (7.16) 

The explicit term of (7.15) is simply the total energy for a Newtonian self-gravitating 
system. 

The quantity P,4 defined by (4.33) is also conserved as a consequence of Synge’s 
equations of motion. For a perfect fluid the conservation of PW4 leads to an equation for 
centre-of-mass motion which agrees with that derived by Contopoulos and Spyrou 
(1976, see equations (17) and (18)) using Chandrasekhar’s equations of hydro- 
dynamics. 

and 

8. Conclusion 

We have not considered the metric in the above. A comparison between the metric 
derived on the basis of Synge’s equations and that derived by Chandrasekhar and Nutku 
(1969) in the second PNA shows that they agree, to order k 2  in the case of g,, and g4, 
and to order k5” in the case of g4,, up to a gauge transformation, similar to but not the 
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same as that derived by Anderson and Decanio (1975). Work now in progress indicates 
that the divergent integrals which occur in the work of Anderson and Decanio (1975) 
and Chandrasekhar and Esposito (1969) do not arise in Synge’s gauge. One further 
approximation in Synge’s scheme will lead to the lowest-order radiation terms in 
parallel with the work of Chandrasekhar and Esposito (1969) and that of Anderson and 
Decanio (1975). This step is now being calculated and a procedure along the lines of 
that used by McCrea and O’Brien (1978), O’Brien (1978) and Hogan and McCrea 
(1974) should enable one to calculate the radiation damping for a binary system. 

Appendix 

and differentiating this one obtains 

Also, one may write 

Combining (A.3) and (AS),  the result (A. 1) follows. 
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